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By using the method of quantum statistics, we directly derive the partition functions
of bosonic and fermionic field in Kaluza–Klein black hole with axial symmetry. Then
via the improved brick-wall method, membrane model, we obtain that the entropy of
bosonic and fermionic field in black hole is proportional to the area of horizon. In our
result, the stripped term and the divergent logarithmic term no longer exist. The problem
that the state density is divergent around the horizon doesn’t exist either. We also give
the influence of the spining degeneracy of particles on the entropy of black hole. We
offer a new, simple, and direct way of calculating the entropy of different complicated
black holes.

KEY WORDS: quantum statistics; brick-wall method; membrane model; entropy of
black hole.

1. INTRODUCTION

Entropy of a black hole is one of the important subjects in theoretical physics.
Since entropy has statistical meaning, the understanding of entropy involves the
sense of the microscopic essence of the black hole. Fully understanding of it
needs a good quantum gravitation theory. However, at present the work of it is
not satisfying. The statistical origin of the black hole is not solved yet (Liberati,
1997). On the other hand, many literatures gave the same result that the entropy
of the black hole is proportional to the area of horizon (Caiet al., 1999; Cognola
and Lecca, 1989; Frolovet al., 1996; Hochberget al., 1993; Jing and Yan, 2001;
Padmanaban, 1999; Solodukhin, 1995; ’t Hooft, 1985). The most frequently used
method among them is the brick-wall method advanced by ’t Hooft (1985). This
method is used to study the statistical properties of scalar field and Dirac field
in various black holes (Lee and Kim, 1996; Liu and Zhao, 2000; Shen and Chen,
2000) and it is found that the general expression of the black hole’s entropy consists
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of a term that is proportional to the area of its event horizon and a divergent log-
arithmic term that is not proportional to the area of event horizon. However, it is
doubted that, first, the entropy of the scalar or Dirac field outside the event horizon
is the entropy of the black hole; second, the state density near the event horizon is
divergent; third, the logarithmic term is left out andL3 is considered as the con-
tribution of distant vacuum surrounding the system; fourth, the wave function of
scalar or Dirac field is solved approximately. The above mentioned problems with
the original brick-wall method are unnatural and insurmountable.

It is known that the entropy of the black hole is proportional to the area of
horizon and the existence of the horizon is the basic property of the black hole.
It is proved that the existence of the horizon generally results in Hawking effect
(Zhao, 1981). And whetehr there is the entropy of the black hole or not relates
to the existence of the horizon (Gibbons and Hawking, 1977). Then it reveals
that it is natural that the entropy of the black hole is proportional to the area of
horizon. Its value has nothing to do with the radiation field outside the horizon.
And the horizon only has the property of the two-dimensional membranne in three-
dimensional space. Does the number of quantum states of the two-dimensional
membrane correspond to the entropy of the black hole? If it does, calculating the
entropy of the membrane will be the key issue.

We derive the bosonic and fermionic partition functions in Kaluza–Klein
black holes directly by quantum statistical method (Zhaoet al., 2001) and obtain
the integral expression of the system’s entropy. Then we use the membrane model
(Wu et al., 2001; Zhaoet al., 2001a,b, 2002) to calculate entropy. As a result,
the term left out in original brick-wall method no longer exists. The problem that
the state density near the event horizon is divergent doesn’t exist either. We also
consider the spinning degeneracy of radiational particles. In the whole process, the
physical idea is clear, calculation is simple, and the result is reasonable. It offers
a neat way of studying black hole’s entropy. In this paper, we take the simplest
functional form of the temperature (C = h = KB = 1).

2. KALUZA–KLEIN BLACK HOLE

The line element in Kaluza–Klein space-time is given by (Frolov and Novikov,
1993)

ds2 = −1− a2 sin2 θ

B6
dt2− 2a sin2 θ

1√
1− η2

Z

B
dt dφ

+
[

B(r 2+ a2)+ a2 sin2 θ
Z

B

]
sin2 θ dφ2

+ B6

1
dr2+ B6 dθ2, (2.1)
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where

1 = r 2− 2µr + a2, 6 = r 2+ a2 cos2 θ , Z = 2µr

6
, B =

(
1+ η2Z

1− η2

)1/2

.

The relations among mass, electric charge, and angular momentum andµ, η are
respectively

M = µ
[
1+ η2

2(1− η2)

]
, Q = µη

1− η2
, J = µa√

1− η2
,

where r± = µ±
√
µ2− a2 are the locations of outer and inner horizons,

respectively.

A± = 4π
r 2
± + a2√
1− η2

. (2.2)

The Hawking radiation temperature of the black hole is

T+ =
√

(1− η2)(µ2− a2)

2π (r 2± + a2)
. (2.3)

3. THE BOSONIC ENTROPY

The natural radiation temperature (Lee and Kim, 1996; Tolman, 1934) got by
the observer at rest at an infinite distance is

T = T+√−g′u
, (3.1)

whereT+ is the equilibrium temperature and

g′t t =
gtt gϕϕ − g2

tϕ

gϕϕ
= − 1B

(1− η2)B2(r 2+ a2)+ a2 sin2 θZ
. (3.2)

For bosonic gas, we calculate the partition function as

ln Z = −
∑

t

gi ln(1− e−βεt ). (3.3)

In unit volume, the number of quantum states with the energy betweenε and
ε + dε or the frequency betweenv andv + dv is as follows:

g(v) dv = j 4πv2 dv, (3.4)

where j is the spin degeneracy of particles. Since in the space-time (2.1), the area
of two-dimensional curved surface at random pointr is

A(r ) =
∫

d A=
∫ √

g dθ dϕ, (3.5)
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where

g =
∣∣∣∣gθθ gθϕ
gϕθ gϕϕ

∣∣∣∣ = gθθgϕϕ.

The volume of the lamella at random pointr outside the horizon is as follows:

dV = A(r )
√

grr dr. (3.6)

So, the partition function of the system at the lamella with random thickness at
point r outside the horizon is as follows:

ln Z =
∫

A(r )
√

grr dr
∑

i

gi

∑
n=1

1

n
e−nβεi

= j 4π
∫

A(r )
√

grr dr
∑
n=1

1

n

∫ ∞
0

e
nhv
T v2 dv = j

1

90
π2
∫

A(r )
√

grr dr

β3

= j
π2

90

∫ √
gθθgϕϕgrr dr dθ dϕ

β3
, (3.7)

where 1/β = T , using the relation between entropy and partition function

S= ln Z − β0
∂ ln Z

∂β0
, (3.8)

we have

Sb = j
2

45
π2 1

β3
0

∫ √
gθθgϕϕgrr dr

(−g′t t )3/2
dθ dϕ = j

2π2

45β3
0

∫
dθ dϕ

×
∫ [(r 2+ a2)

(
r 2+ a2+ 2µr η2

l−η2

)
− (r − r+)(r−−)a2 sin2 θ ]2

B(r − r+)2(r − r−)2(r 2+ a2 cos2 θ )
sinθ dr

(3.9)

where

β0 = 1

T+
= 4π (r 2

+ + a2)

(r+ − r−)
√

1− η2
, and β = β0

√−gtt .

In the above integral, we take ther integral region [r+ + ς, r+ + Nς ], whereς is
a small nonnegative quantity,N is a constant larger than 1 (Zhaoet al., 2001a).
So we have,

Sb = j
2π2

45β3
0

∫
dθ ddϕ

r++Nς∫
r++ς

[(r 2+ a2)(r 2+ a2+ 2µr η2

l−η2 )− (r − r+)(r − r−)a2 sin2 θ ]2

B(r − r+)2(r−−)2(r 2+ a2 cos2 θ )
sinθ dr
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= j
4π3

45β3
0

∫ π

0

(r 2
+ + a2)4

(1− η2)2(r+ − r−)2(r 2+ + a2 cos2 θ )B(r+)[
N − 1

Nς

]
sinθdθ + G(r+, N, ς ). (3.10)

From (3.17) in the ’t Hooft (1995), we know whenNς = L À r+, if we take

ς = T+
90

, (3.11)

we obtain that the entropy of black hole is proportional to the area of its horizon. In
order to let the calculated entropy be independent of parametersN andς introduced
in (3.10), we take

ς = T+
90

α

sinα cosα

1

B(r+)(1− η2)1/2

N − 1

N
. (3.12)

Then (3.10) can be reduced to

Sb = j
sinα cosα

α

∫ π

0

π (r 2+ a2)2

2(1− η2)1/2(r 2+ + a2 cos2 θ )
sinθdθ + G(r+, N, ς )

= π (r 2
+ + a2)

(1− η2)1/2
+ G(r+, N, ς ) = j

1

4
A+ + G(r+, N, ς ). (3.13)

where

G(r+, N, ς ) = j
4π3

45β3
0

∫ π

0

[
f1(r+)− 2(r 2

+ + a2)2a2 sin2 θ

(1− η2)(r+ − r−)(r 2+ + a2 cos2 θ )B(r+)

]

× sinθ dθ ln N + j
4π3

45β3
0

π∫
0

sinθdθ
∫ r++Nς

r++ς
F(r ) dr, (3.14)

F(r ) =
∞∑

n=2

f (n)
1 (r+)

n!
(r − r+)n−2−

∞∑
n=1

f (n)
1 (r+)

n!
(r − r+)n−1+ f3(r ),

(3.15)

and

f1(r ) =
(r 2+ a2)2

(
r 2+ a2+ 2µr η2

1−η2

)2

(r − r−)2(r 2+ a2 cos2 θ )B(r )
,

f2(r ) =
2(r 2+ a2)

(
r 2+ a2+ 2µr η2

1−η2

)2
a2 sin2 θ

(r − r−)(r 2+ a2 cos2 θ )B(r )
,
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f3(r ) = a4 sin4 ϑ

B(r )(r 2+ a2 cos2 θ )
, f ′1(r+) = d f1

dr

∣∣∣∣
r=r+

,

f ′2(r+) = d f2
dr

∣∣∣∣
r=r+

, α = arctg
a

r+
.

As N → 1,ς → 0, andNς → 0, that is, the ultraviolet cutoff and infrared cutoff
both approach the outer horizon of the black hole, andF(r ) is analytic function at
r = r+, we have lim

N→1
G(r+, N, ς )→ 0. The black hole’s entropy is as follows:

Sb = j
1

4
A+, (3.16)

where

A+ =
4π (r 2

+ + a2)

(1− η2)1/2

is the area of horizon. Since we let the integral upper limit and lower limit tend to
the outer horizon, the entropy obtained in (3.16) is independent of the radiation field
outside horizon. It only has the property of two-dimensional membrane in three-
dimensional space. So the obtained entropy has the property of one-dimensional
membrane. The existence of horizon is the basic property of black hole. It has
already been proved that the general existence of horizon leads to the Hawking
effect (Zhao, 1981). And whether there is black hole’s entropy or not directly
involves the existence of horizon (Gibbons and Hawking, 1977). So the entropy
in (3.16) should be black hole’s entropy. Whenj = 1 for radiation particles, we
obtain that black hole’s entropy is a quarter of the area of horizon. Whenj 6= 1,
we can takej into consideration in the parametersN andς in (3.12) to make sure
that black hole’s entropy is a quarter of the area of horizon.

4. FERMIONIC ENTROPY

For Fermionic gas, the grand partition function is as follows:

ln Z =
∑

l

g1 ln(1+ e−βεl ). (4.1)

From (3.7), we obtain

ln Z =
∫

A(r )
√

grr dr
∑

i

gi

∑
n=1

(−1)n−1

n
e−nβεi

= ω4π
∫

A(r )
√

grr dr
∑
n=1

(−1)n−1

n

∫ ∞
0

e
nhv
T v2dv
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= ωπ
2

90

7

8

∫
A(r )
√

grr dr

β3
= ωπ

2

90

7

8

∫ √
gθθgϕϕgrr dr dθ dϕ

β3
, (4.2)

whereω is the spinning degeneracy of fermionic particles. Using the result of part
three, we can get the fermionic entropy as follows:

Sf = ω7

8

1

4
A+. (4.3)

5. CONCLUSION

In the above analysis, we derive partition functions of various fields in black
hole with different temperature on horizon surface directly by using the statistical
method. We avoid the difficulty in solving wave equation. Since we use the im-
proved brick-wall method, membrane model, to calculate the entropy of various
fields, the problem that the state density is divergent around horizon does not exist
any more. In our calculation, asN → 1, ς → 0 andNς → 0, that is, the inner
and outer “brick walls” both approach the outer horizon of black hole. From (3.16)
and (4.3), we know that the divergent logarithmic term andL3 term in the original
brick-wall method no longer exist. The obtained entropy is proportional to the area
of its horizon.

In above analysis, we know that by using the statistical and membrane model
methods, the doubt that why the entropy of the scalar or Dirac field outside the event
horizon is the entropy of black hole in the original brick-wall method doesn’t exist
and the complicated approximations in solution is avoided. In the whole process,
the physical idea is clear; the calculation is simple; and the result is reasonable. We
also consider the influence of the spinning degeneracy of particles on the entropy.
In calculation of entropy of Kaluza–Klein black hole, the relation betweenN andς
is related to angleθ . When the space-time reduces to Reissner–Nordstrom space-
time, the relation betweenN andς also can be reduced to the result in the Zhao
et al. (2001a).
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